Оптические лазерные модули для модульного сетевого тестера N3900A

Оптические измерительные модули Agilent N391х предназначены для работы с Модульным Сетевым Тестером и выполняют функции оптического рефлектометра. Они легко и просто подключаются к базовому блоку и, благодаря гибкой архитектуре ПО, позволяют начать работу сразу же после подключения. Каждый модуль оснащен собственным процессором сбора и обработки данных, который работает автономно. Модули могут быть подключены к любому другому оптическому сетевому тестеру без каких-либо изменений программного обеспечения.

Благодаря скоростным процессорам оптических модулей N3910AL (1310/1550nm) и N3911AL (1550/1625nm), а также новой технологии ультра высокого динамического диапазона 45 дБ, стало возможным быстрое тестирование длинных ВОЛС. При работах на кабелях с большим количеством волокон это снижает время тестирования с минут до секунд.

Сразу же после поступления данных от измерения автоматический тест прошел/не прошел проверит затухание, и вносимые и обратные потери, а тест на изгибы зафиксирует места микро и макро изгибов.

Оптический коннектор имеет два положения: верхнее и нижнее, что несомненно решает множество проблем. Если коннектор поднять в верхнее положение - к нему можно легко подсоединить оптический разъем кабеля, это также снижает риск поцарапать или запачкать его. Во время транспортировки коннектор опускается в нижнее положение и закрывается защитным колпачком от повреждения или попадания пыли.

Нижнее положение

Верхнее положение

Универсальный соединительный интерфейс, который предлагает Agilent, позволяет подключать к рефлектометру FC/PC, SC, и LC коннекторы.

Технические характеристики

Встроенные функции

- режим оптического рефлектометра
- тестирование нескольких волокон
- автоматизированные рефлектометрические измерения с использованием переключателя 1x1
- измерение суммарных обратных потерь
- измерение суммарного затухания
- тестирование ВОК на себя
- встроенный источник излучения
- тест прошел/не прошел

Модули на 2λ ⁽¹⁾		Agilent N3910AM		Agilent N3910AL		Agilent N3911AL	
Центральная длина волны, нм		1310	1550	1310	1550	1550	1625
Погрешность, нм		± 25	± 25	± 25	± 25	± 25	±20
Динамический ди	апазон, дБ ⁽²⁾						
Длительность импульса	10 нс	19	17	24	22	22	18
	100 нс	24	22	29	27	27	24
	1 мкс	30	29	35	34	34	30
	10 мкс	38	37	42	41	41	37
	20 мкс	40	39	45	43	43	39

Модули на 3λ ⁽¹⁾ и 4λ		Agilent N391	4AL		Agilent N3916AL			
Центральная длина волны, нм		1310	1550	1625	1310	1480	1550	1625
Погрешность, нм		± 25	± 25	± 20	± 25	± 20	± 25	± 20
Динамический ди	иапазон, дБ ⁽²⁾							
	10 нс	22	20	16	22	19	20	16
Ппитопиности	100 нс	27	25	22	27	24	25	22
Длительность импульса	1 мкс	33	31	28	33	30	31	28
VIIVITYTIBCA	10 мкс	40	38	35	40	37	38	35
	20 мкс	43	41	38	43	-	41	38

На любой длине волны возможен выбор следующих длин импульса: 10нс, 30нс, 100нс, 300нс, 1мкс, 10мкс, 20 мкс. Все модули позволяют работу источника излучения на выбранной длине волны.

Разрешение

Модуль	все ОМ модули
Мертвая зона по событиям ⁽³⁾	3 м
Мертвая зона по затуханию ⁽⁴⁾	10м на 1310нм/ 12м на 1550 нм/ 14м на 1625 нм

Точность дистанции(5)

Точность потерь/отражений (6)

Ошибка смещения	Ошибка шкалы	Ошибка отсчета
± 1 м	± 10 ⁻⁴	± 0,5 от расстояния
		между отсчетами

Измерения обратного рассеяния шаг 1с	IB Измерения отражений ⁽⁷⁾
± 0,03 дБ	± 1,0 дБ

Примечания:

- 1) Гарантированные характеристики при 22 °C ± 3°C
- 2) Измерено с помощью стандартного ОМ волокна при SNR=1 уровне шума за время усреднения 3 минуты. Режим оптимизации: динамический диапазон.
- 3) Отражение ≤- 35 дБ при длине импульса 10 нс на пролете ≤ 4 км. Режим оптимизации: разрешение.
- 4) Типичные данные при отражении ≤- 50 дБ при длине импульса 30нс. на пролете ≤4 км.

Гарантированные данные при отражении - 35 дБ при длине импульса 30нс, и просматриваемом диапазоне 4 км. Режим оптимизации: разрешение.

20m на 1310 нм: Agilent N3910AM, N3910AL, N3911AL, N3914AL 25m на 1550 нм: N3910AM, N3910AL, N3911AL, N3914AL

28m на 1625 нм: N3911AL, N3914AL

- 5) Точность дистанции: ошибка смещения + ошибка шкалы*расстояние + ошибка отсчета
- SNR ≥ 15 дБ и 1 мкс, время усреднения 3 минуты.
- 20 дБ 60 дБ
- 8) после 10 минутного прогрева (15 мин, T = constant)

Горизонтальные параметры

Старт: 0 - 400 км Пролет: 0.1 км - 400 км Разрешающая способность

считывания: 0.1 м

Мин. интервал размещения

отсчетов: 8 см

Индекс рефракции: 1.00000-2.00000

Единицы измерения расстояния: км,футы, мили

Количество точек измерения: до 64000

Формат трасс согласно Bellcore/Telcordia GR-196 Выпуски 1.0, 1.1; 2.0, Стандарт данных OTDR

Вертикальные параметры

Вертикальный масштаб: 0.1 - 10.0 dB/дел. Разрешающая способность считывания: 0.001dB. Диапазон отражений: от -14dB до -70dB.

Авто установка и анализ:

обеспечивается.

Установки инструмента: хранение и вызов выбираемых пользователем

установок.

Оптические интерфейсы

Diamond HMS-10, FC/PC, DIN 47256, ST, FC/APC, Biconic, SC, NEC D4, E2000, LC. Все поставляются дополнительно и

Встроенный лазерный источник

V	2 0
Уровень выходной	- 3 дБм 8 дБм
мощности (CW)	(зависит от модуля и длины волны)
Стабильность(8)	±0.1 dB (±0.15 дБ на 1625 нм)
Модуляция	меандр 2 кГц, 1 кГц, 270 Гц

заменяются пользователем самостоятельно.

Сканирование трассы

Тип событий: отражающие и неотражающие события.

Максимальное количество событий: 100. Пороги для неотражающих событий: от 0,0 dB до 5,0 dB с шагом 0,01dB. Пороги для отражающих событий: от -14 dB до -65 dB с шагом 0,1dB.

Пороги для обрывов волокна: от 0,1 dB до 10,0 dB и 0,00 дБ с шагом 0,1dB.

Пороги для конца волокна: от 0,1 dB до 10,0 dB и 0,00 дБ с шагом 0,1dB

Общие характеристики

Рабочая температура: от 0 оС до +50 оС Температура хранения: от -40°С до + 60°С

Влажность: 95% рт. ст. при температуре от 0°С до +40°С

Размеры: 217 мм (высота) \times 212 мм (ширина) \times 33 мм (толщина)

Вес: нетто <1,2 кг

Класс безопасности лазера: класс 1IEC 60825-1 (2001), 21 CFR 1040.10

Потребление электроэнергии: 8 Вт

Время работы: типично 5 часов в режиме проведения измерений при

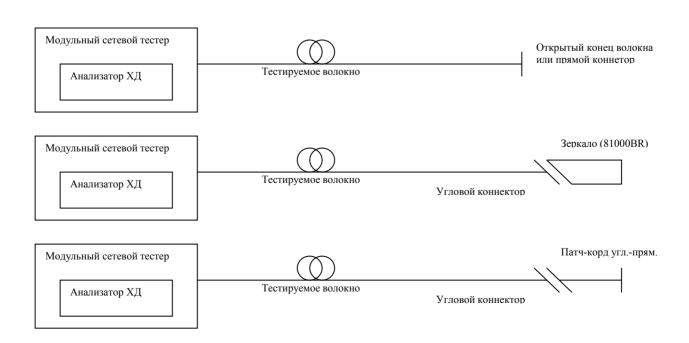
подключенном модуле оптического рефлектометра и режиме подсветки экрана на 50%.

Модуль анализатора хроматической дисперсии (ХД) для модульного сетевого тестера Agilent N3916AL

Простое и быстрое определение типа оптического волокна и измерение хроматической дисперсии нажатием одной кнопки.

Путем лишь одного нажатия кнопки пользователь может получить информацию о типе подключенного волокна и величине хроматической дисперсии благодаря наличию программируемых алгоритмов для измерения ХД и предустановленным заводским настройкам тестовых параметров. Необходимо наличие только одного конца волокна. Модуль сочетает в себе возможности оптического рефлектометра на 4 дины волны и анализатора ХД, что дает возможность проводить за один раз измерения и затухания и ХД волокна.

В результате выполнения теста хроматической дисперсии выводятся значения для дисперсии и коэффициентов дисперсии /крутизны дисперсии как функций длины волны, что дает возможность легко определить правильный модуль компенсации дисперсии.


ФУНКЦИИ

- Полный диапазон ХД от 1250 нм до 1700 нм;
- Полностью автоматическое тестирование (одна кнопка);
- Достаточно одного конца волокна;
- Определение волокно разных типов;
- Возможности оптического рефлектометра на 4 длины волны.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

(Технические характеристики оптического рефлектометра приведены в разделе Оптических лазерных модулей)

Анализ хроматической дисперсии предусматривает наличие отражения от конца по крайней мере 4% (-14 дБ). Это обеспечивается с помощью прямого соединительного коннектора или открытого волокна. Если Модуль анализатора ХД работает с волокном, оконцованным угловым коннектором, для обеспечения надлежащего отражения рекомендуется применять зеркало, например типа Agilent 81000BR или патч-корд с конннекторами угловой-прямой.

Характеристики анализа хроматической дисперсии

Диапазон дисперсии		± 2500 ps/nm		
Диапазон длин волн		1250 нм – 1700 нм		
Длина волны нулевой дисперсии ^(а)	Повторяемость	± 0.6 нм		
Коэффициент дисперсии ^(в)	Точность	± 0.5 пс/нм/км		
Коэффициент дисперсии	Повторяемость	± 0.05 пс/нм/км		
Динамический диапазон		38 дБ ^(c)		
Разрешение длины волны	Мин. 0,1 нм			

[[]а] 25 км волокна со смещенной дисперсией, сглаживание 2-го порядка

Модуль анализатора поляризационной модовой дисперсии (ПМД) для модульного сетевого тестера Agilent N3909A

Анализатор поляризационной модовой дисперсии производства Agilent является первым и единственным переносным анализатором ПМД, разработанным в соответствии с "золотым правилом" метода анализа матрицы Джонса. Специалистами Agilent Technologies этот метод был сделан быстрым и надежным для применения в полевых условиях и значительно снижено влияние сдвигов и вибраций волокна на результаты измерений.

ФУНКЦИИ

Истинной причиной возникновения проблем в оптических кабелях и сетях является дифференциальная групповая задержка (ДГЗ). Поляризационная модовая дисперсия, которая является средним значением ДГЗ, следовательно служит индикатором возможных непопалок

Анализатор ПМД Agilent N3909A измеряет непостредственно дифференциальную групповую задержку и высчитывает значение поляризационной модовой дисперсии как среднее значение. Такой подход также дает возможность получить значение ДГЗ для отдельно взятых значений длин волн, для более точного обнаружения неисправностей.

- Измерение значения дифференциальной групповой задержки на длине волны;
- Измерение поляризационной модовой дисперсии 2-го порядка на длине волны;
- Обнаружение линка неисправности для ДГЗ/ПМД;
- Измерение потерь на длине волны;
- Полностью автоматическое тестирование (одна кнопка)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметры, связанные с длиной волны	Диапазон длин волн	1525 нм - 1620 нм
	Разрешение длины волны	0.3 нм
Параметры, связанные с ДГЗ	Точность ДГЗ ^(а)	±(100 фс+ 3% от значения ДГ3)
Параметры, связанные с ПМД	Диапазон ПМД	0 пс - 115 пс
	Неопределенность ПМД (в,с)	±(0.02 пс + 2% от значения ПМД)

Анализатор ПМД Agilent N3909A состоит из двух частей - блока источника света ПМД Agilent N3909AS и приемного блока ПМД Agilent N3909AR. Технические данные на компактный настраиваемый источник света Agilent 81944A и блок оптического мультиметра Agilent 8163B, которые составляют блок источника света ПМД, приведены отдельно.

[[]b] 25 км волокна с ненулевой смещенной дисперсией, сглаживание Селмейера 4 усл.

[[]c] при отражении от конца 96% (зеркало Agilent 81000BR); 32 дБ с 4% (-14дБ) отражение Френеля (голое волокно или прямой коннектор)

ОБЩИЕ ХАРАКТЕРИСТИКИ

Точность определения потерь линии $^{(d)} \pm 0.4~dB$

Время измерения 15 с

Макс. потери линии (e, f, g) 53 дБ

Другие свойства:

- Устойчив к движению волокна:
- Возможны измерения через оптические усилители.

Оптические интерфейсы:

Выбираемые пользователем дополнительно FC/PC, DIN 47256, ST, FC/APC, SC, E2000, LC, MU.

[a] Для ДГЗ < 50 nc. Значение типично для ДГЗ > 50 nc.

[b] Для ПМД \leq 20 nc. Значение типично для ПМД > 50 ps.

[с] Размах длины волны 100нм.

[d] Погрешность коннектора не включена

[е] Для $1570 \le \lambda \le 1630$ нм: 50 дБ для всего диапазона длин волн.

[f] При изменении потерь на ≤10 дБ_{лик} на весь диапазон длин волн

[g] Для тестируемых волокон с потерями > 0дБ (усиление), выходная мощность блок источника сета должна быть уменьшена на 6дБм. Для всех других значений потерь тестируемого волокна, применяется установленное по умолчанию значение 13дБм.

N3909AR Приемный блок ПМД Размеры: 217x 212x33 мм

Рабочая температура: от 0°C до +50°C Температура хранения: от -40°C до + 60°C Относит. влажность: 95% рт.ст.(0°C + 40°C.)

N3909AS Блок источника света ПМД

Рабочая температура: от 10°C до +35°C

Температура хранения: от -40° C до $+70^{\circ}$ C Относит. влажность: 80% рт.ст.(10° C $+35^{\circ}$ C)

Вес: нетто <1.2 кг

Размеры: 88x213x380мм Вес: нетто <5.2 кг

Модуль оптического спектроанализатора для модульного сетевого тестера Agilent N3935A

Оптический спектроанализатор DWDM Agilent N3935A спроектирован, чтобы быть установить его в базовый блок модульного оптического тестера N3900A за считанные секунды. Каждый DWDM оптический спектроанализатор имеет встроенный RISC процессор для быстрой и точной обработки данных спектрограмм. Благодаря динамической архитектуре программного обеспечения, приложение анализа DWDM загружается за секунды, и позволяет работу стандарта «plug and play». Оптический спектроанализатор DWDM может заменяться и совместно использоваться многими пользователями без изменения ПО базового блока, обеспечивая эффективные и надежные услуги инсталляции и эксплуатации.

Широкий диапазон длин волн с превосходной точностью измерений

Оптический спектроанализатор DWDM способен характеризовать системы DWDM в диапазонах

S-, C-, и L- и более. Это включает характеризацию оптического спектра до и после оптических усилителей. С разрешением сканирования 0.005nm, относительной точностью длин волн 0.025 nm и превосходным динамическим диапазоном, оптические спектроанализаторы DWDM Agilent предназначен для использования в системах с размещением каналов до 25 GHz.

Характеризация качества оптических сигналов

Качество оптического спектра DWDM характеризуется измерениями мощности, длин волн и отношения оптического сигнала к шуму (OSNR). Оптический спектроанализатор DWDM Agilent обеспечивает динамический диапазон 45 dBc @ 100 GHz и 40 dBc @ 50 GHz. Это оставляет достаточно запаса для обнаружения ухудшения сигнала или неисправностей.

Маленький, легкий и защищенный

Имея размеры 217 x 212 x 90 мм и весом 2.5 kg оптический спектроанализатор DWDM Agilent предлагает эффективность, которая позволяет полную характеризацию оптических сигналов DWDM. Базовый блок оптического сетевого тестера и его модули сконструированы для эксплуатации в сложных условиях внешней среды.

К следующему заданию

Оптический спектроанализатор DWDM N3935A позволяет тестирование и квалификацию линий DWDM с высочайшей эффективностью. Режим реального времени с его постоянными развертками позволяет быстро изолировать проблемы, так же как и ежедневную эксплуатацию DWDM систем.

Усреднение нескольких измерений значительно снижает уровень шумов. Измерения по нажатию одной кнопки обеспечивают завершение предварительно подготовленных работ без потребности в забирающих время начальных установках. Оптический спектроанализатор DWDM значительно сокращает время тестирования.

ФУНКЦИИ

- Графические дисплей и таблица результатов
- Автоматическое обнаружение сигналов и измерение длин волн
- Автоматическое обнаружение неисправности канала и документирование
- Автоматизированное измерение OSNR
- Быстрый сбор данных по нажатию одной кнопки
- Измерения в реальном времени и усредняющие
- Экранные клавиши, определяемые пользователем
- Pass/Fail Тестовый анализ «Прошел/Не прошел» с определяемыми пользователем пределами
- Экранная помощь on-line
- Отображение до 12 спектров DWDM для сравнения
- Минимальное отстояние точек данных 0.005 nm
- Многопользовательские установки профиля

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типичные значения указаны ЖИРНЫМ шрифтом.

Общие характеристики Диапазон длины волн 1450 nm до 1650 nm Максимальное число одновременных каналов 256 Максимальное число точек отсчетов 40000

Оптические

Параметры, связанные с длиной волны

Полоса разрешения (FWHM) 100 pm Абсолютная нестабильность ± 0.03 nm Относительная нестабильность с ± 0.02 nm Разрешение сканирования 0.005 nm

Параметры мощности

Абсолютная нестабильность $\pm 0.3 \text{ dB}$ \circ Относительная нестабильность (в зависимости от λ) $\circ \pm 0.2 \text{ dB}$

Линейность (в зависимости от мощности) $^{c} \pm 0.1 \text{ dB}$ Нестабильность мощности из-за поляризации $^{f} \pm 0.05 \text{ dB}$

Разрешение считывания 0.01 dB

Оптическое отношение отсечки ⁹ **45 dBc** @ 100 GHz **40 dBc** @ 50 GHz ≥ **35 dBc @ 25 GHz**

Уровень мощности шума (RMS) -70 dBm Максимальный безопасный входной уровень h +30 dBm Обратные потери > 40 dB

Оптические интерфейсы

Выбираемые пользователем дополнительно FC/PC, DIN 47256, ST, FC/APC, SC, E2000, LC, MU.

Общие

Рабочая температура: 0 °C до +40 °C Температура хранения: -20 °C до + 70 °C Влажность: 95% рт.ст. от 0 °C до + 40 °C.

Размеры: 217 x 212 x 90 мм.

Вес: нетто 2.5 кг

Рекомендуемый период калибровки: 1 год

[а] Диапазон длин волн :1500 нм - 1620 нм

Оптические характеристики действительны после прогрева 30 минут (допускается 60-минутная акклиматизация, если температура хранения отличалась). Характеристики относятся к одноканальным измерениям, если не указано другое.

 $[b] \pm 0.04$ нм при указанном условии (Уровень сигнала -20 дБм., 23 ± 3 °C).

[с] Уровень сигнала :от -30 дБм до +5 дБм

[d] Включает погрешность мощности из-за поляризации

[e] $\pm 0.6 \, \partial Б$ при указанном условии (Уровень сигнала -20 $\partial Б$ м; 23 $\pm 3 \, ^{\circ}$ С).

[f] @ 1550 нм

[g] . 40 дБт @ 100 ГГц и . 35 dВс @ 50 ГГц для уровня сигнала выше 0 дБм

[h] Макс +15 дБм на канал (0.1 нм)

Модуль коммутатора оптических сигналов 1x12 Agilent N3940AA

Модули коммутации оптических сигналов 1х12 предназначены для совместной работы с модулями оптического рефлектометра N391х. Они легко пристегиваются к базовому блоку тестера вслед за N391х, затем подключают входной порт коммутатора к порту рефлектометра. Таким образом, получается мощный прибор для тестирования оптических кабелей с большим количеством волокон, например ленточных кабелей. Модуль обладает широким динамическим диапазоном от 1280нм до 1650 нм и исполнен в упрочненном виде для полевых работ.

Встроенный тест проверки нескольких волокон подключает порт рефлектометра к любому из 12 выходных портов коммутатора, что дает возможность протестировать до 12 волокон. Результаты сохраняются автоматически. Для каждого волокна можно сохранить 8 различных установок, в том числе длину волны, длительность импульса, диапазон и время усреднения. При желании эти функции можно проводить не автоматически, а вручную через интерфейс базового блока тестера.

Agilent N3940AA Модуль коммутатора оптических сигналов 1x12

Agilent N3991A заменяемый пользователем патчкорд для подключения ленточного волокна

Agilent N3989AX Кабель-разветвитель с 12 коннекторами для подключения нескольких волокон

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Все данные типичны на 1310 нм, 1550 нм, 1625 нм Конфигурация 1x12 Диапазон длин волн 1280-1650 нм Вносимые потери 1 2,7 дБ Потери из-за поляризации $\pm 0,05$ дБ Вносимые потери:

- на прямом оптическом коннекторе 40дБ
- на угловом оптическом коннекторе 50 дБ(макс)

Повторяемость² 0,02 дБ Переходные помехи 50дБ

Общие характеристики

Рабочая температура от 0° С до $+50^{\circ}$ С Температура хранения от -40° С до $+60^{\circ}$ С Размеры 217 мм \times 212 мм \times 33 мм Вес 1,4 кг Входная оптическая мощность 200 мВт (+23дБм макс) Потребление электроэнергии 1 Вт Скорость переключения между портами 100 мс

- 1) Вносимые потери указаны без входных и выходных коннекторов. Входной коннектор добавляет 0,2 дБ. Выходной коннектор 0,5 дБ.
- 2) Если прибор неподвижен и при температуре 25°C.

Видеокамера со встроенным микроскопом Agilent N3988A

Видеомикроскоп Agilent N3988A предназначен для работы с Модульным Сетевым Тестером для просмотра состояния оптических соединителей на патчкордах или их панелях. Видеомикроскоп подключается к базовому блоку через порт USB, он поставляется с полным набором оптических коннекторов с разными интерфейсами. Это позволяет проверить состояние оптического соединителя на наличие мусора, царапин и дефектов чрезвычайно быстро. Результат отображается на экране базового блока и нет риска попадания лазера в глаза.

ФУНКЦИИ

- ручной видеомикроскоп с интегрированным USB интерфейсом (тип slave)
- увеличение от 250 до 480 раз
- кнопка сохранения изображения
- сохранение в формате JPEG
- фокусировка
- управление потреблением электроэнергии
- документирование снимков
- уровень повреждения входной оптической мощности +30дБ

Общие характеристики

Рабочая температура от 0°С до +50°С Температура хранения от -20°С до +70°С Влажность 95% тр.ст. при 0°C+40°C Класс защиты окружающей среды IP54 Размеры 200 мм \times 50 мм Вес 0,2 кг Потребление электроэнергии 1 Вт макс Длина кабеля USB 2м

Стандарты: UL узнаваем, CE маркируется, CSA одобрен